数控机床工作原理篇1
关键词:A工作原理;面板设计;电气保护
1.SINUMERIK 810D系统
SINUMERIK 810D是一种具有免维护性能的操作面板控制系统,是西门子公司针对中国市场进行性价比优化的产品。其核心部件―CCU(数控驱动单元)将MMC、OP以及I/O模块集于一体,具有无电池、无风扇、免维护等特点。该系统具备中文界面的高质量显示面板,易于操作和编程。它可通过生产现场总线PROFIBUS将驱动器、输入输出模块连接起来,控制六个数字进给轴和一个数字或模拟主轴。驱动系统的模块化结构为各种应用提供了最大灵活性,并且易于安装,可靠性高,布线费用低。该系统是用于控制各类车床和铣床的理想控制系统,非常适合于车间级加工应用。此外,SINUMERIK 810D系统中还含有丰富多样的工艺循环,以铣床为例,除了常用的钻孔、镗孔、铰孔、攻丝循环以外,还包含对线性排列孔和圆周排列孔进行钻、镗、铰、攻丝的循环;端面铣削循环;轮廓铣削循环;圆形和矩形型腔铣削循环;长孔铣削循环;圆周槽和圆弧槽铣削循环;螺纹铣削循环等多种铣削循环的功能。SINUMERIK 810D数控系统采用了当今先进的控制概念、适用于钻削、铣削以及车削和磨削机床加工的控制。其能力涵盖了目前绝大多数大型、特殊、高速、高精度加工机床的要求。SINUMERIK 810D数控系统建立在综合的系统平台上,通过系统设定功能而适用于几乎所有的控制系统,810D与SIMODRIVE 611数字驱动系统和SIMATIC S7可编程序控制器一起,构成了一个全数字控制系统,用于各种复杂零件加工任务,并优于其他系统的动态品质和控制精度。SINUMERIK 810D数控系统采用开放式系统理念,可以在数控核心部分使用标准开发工具而实现用户指定的系统循环和编制用户所需特殊的界面。
1.1 SINUMERIK 810D系统的功能
(1)CNC功能。数控系统可以控制车床、钻铣床等机床。其可以控制六个进给轴和一个数字或模拟主轴的同时保证三轴联动,具有直线插补、平面圆弧插补、螺旋线插补、空间圆弧(CIP)插补等控制方式。系统可以进行螺纹加工、变距螺纹加工等加工方式。并且能满足旋转轴控制、端面和柱面坐标转换(C轴功能)、前馈控制、加速度突变限制、刀具寿命监控、主轴准停控制、刚性攻丝、恒线速切削、FRAME功能(坐标的平移、旋转、镜象、缩放)。
(2)显示和操作。系统采用标准TFT液晶显示器,全PC键盘操作。可连接机床控制面板、手持操作单元、软盘驱动器等。在操作使用上,其系统用户界面分成五个工作区,即:机床、参数、程序编辑、服务、诊断。
(3)轴的控制。连接SIMODRIVE 61l数字伺服系统,其可控制六个数字进给轴和一个数字或模拟主轴。其工艺特性:
a.控制精度0.001ram
b.进给速度0.01mm/min-10000m/min
c.主轴转速0.1rpm-99000rpm
d.进给倍率O%-120%(内部0%150%),快速进给倍率200%
(4)PLC编程。S7 300型PLC的输入输出点数是通过扩展模块的方式实现的,其最多可以有四个机架,每个机架最多可以插8个输出模块。
(5)刀具管理。SINUMERIK 810D系统的刀具功能是比较有特色的地方,与其他数控系统不同的是,它并不是每一个刀号只能对应一个刀具半径值和一个刀具长度值,而是在每一个刀具号下面最多可以存储9组刀具补偿值――每个刀具号(T号)下面包含了9个刀沿号(D号),每个刀沿中都可以单独存储一个刀长补偿值和一个刀具半径补偿值。这样做的好处是可以为每把刀具设定多个刀偏值,分别用于粗加工、半精加工以及精加工,却不必担心由于占据了多个D号而与其他的刀具发生混乱。
(6)安全与诊断
整个CNC系统可对其各部分的运行进行实时监控,当有故障发生时,系统除对相应部分进行保护外,并可进行自我诊断,在显示器上显示报警信息。同时增加了安全锁,可对用户分级,对各级用户赋予不同的操作。
2.操作及工作原理
2.1系统上电
(1)接通主电源:首先合上电气控制柜的总空气开关。控制柜电源指示灯亮。
(2)启动810D系统:按操作面板上的“系统启动”按钮,“机床有电”指示灯亮,(显示屏进入主界面),810D数控系统启动成功。
(3)启动液压系统:旋转操作面板上的“液压启停”开关至启动位置(如果液压系统不工作或液压系统工作不正常,其它功能均不能实现)。检查液压系统压力,系统正常工作压力为2Mpar。
2.2主电机启动及点动
(1)主电机启动操作:主电机有两种运行方式,即工作运行(常车切削)和点动运行。工作运行有正、反常车。设有启动及停止按钮;点车运行是为了装工件,工件调整和对刀调整等,因此设有正点动按钮、反点动按钮。
(2)普通车床功能:主电机正转起动主轴旋转,实现原普通车床功能。注意:主电机启动前,保证A、B、C换挡手柄啮合才能实现(只有C手柄离开1:4和1:l的空档处时,PLC控制离合器齿轮脱开,C轴伺服使能失效,主轴才能启动)。启动主电机,主轴旋转,进入原普通车床功能。具体步骤如下:
将主轴C变速手柄移动至任意档位(不能停在1:4和1:l之间位置),接近开关不发出信号,PLC控制液压离合器松开电磁铁1DT,油缸推动离合器使齿轮脱开(C轴电机和主轴脱离),“C轴啮合”指示灯亮。此时,可以使用原机床的各项进给及主轴功能
2.3主电机的制动
本机床采用能耗制动。即当按压停车按钮SBll(SBlo),延时后,KM2、KM5相继失电而KM6得电,电机定子绕组串接,整流二极管D投入工作,定子绕组通过半波整流后的脉动直流而产生制动力矩,电动机开始制动,延时2两秒后断开。
2.4快速及进给电气传动控制
(1)托扳、滑板移动方向及其选择:机床托扳装有左、右、前、后快速移动或进给的离合器。控制托板快速或走刀。其方向由面板上的“方向选择开关”来选择。其动力由快速电机和走刀电机分别拖动。
(2)托扳、滑板工作制及其选择:托扳、滑板的工作方式分为快速和进给。工作状态由方向选择开关选择。说明:无论何种工作方式,何种方向的操作,其电气控制线路原理相仿,只是快速时,其操作方法和点动方式相同,进给运动为常车形式而异。(注意:只有在原普通车床和C轴非使能状态时,才可以使用托板和尾座快速功能。若要使用托板进给功能,主电机必须运行。因为进给速度由主电机的速度决定)。若要停止进给,按压“走刀停止”按钮即可停止。此时电磁离合器脱开,走刀就迅速停止进给。
3.810D面板设计
西门子SINUMERIK 810D属于紧凑型的数控系统,它将显示屏集成在MMC当中,MCP面板包括了手轮、键盘。在安装过程中西门子公司给出了标准的安装尺寸和模式。我们设计了车床主轴以及电机的控制面板如图3.1,同时在完成安装后的810D控制面板图如图3.2所示。
4.电器保护
(1)各分支电路均设有自动空气开关。
(2)各电机分支电路均安装有电动机保护型断路器。
(3)液压泵保护。
油泵采用自动空气开关作短路和过热保护。在运转中,当发生故障时,其自动空气开关自动跳闸,这时机床的所有动作均不能动作。机床运转前首先必须开动油泵,不然主轴、快速进给及走刀均都不能开动。
(4)C轴和原机床主轴的互锁,C轴使能状态和原普通车床状态互锁。
结论
本文设计的机床控制系统采用西门子SINUMERIK 810D数控系统,伺服驱动系统采用了SIMODRIVE611D模块和1FK7系列伺服电机,在伺服电机与主轴之间安装减速器和机械传动装置从而达到大减速比的要求,实现了系统C轴的精确分度功能。并根据需要设计了基于SINUMERIK 810D系统的面板。
数控机床工作原理篇2
【关键词】数控机床;管理;维护
〔abstract〕from the difference of teaching machine and production machine,the paper poits out the problems about teaching cncm achine tools in the management and maintenance process,and analyzes the reasons and giving improvement measures.the experiment oft eaching indicates that the effective of teaching is improving obviously.
〔 key words〕teaching cnc machine;management;maintenance;
0引言 数控机床是利用数字化信号对机床的运动及其加 工进行控制的机床,是数控技术与机床技术相结合的 产物 [1,2] ,它有加工精度高、质量稳定可靠、生产效率 高、对零件加工的适应性强等优点,使其应用日益扩 大,已经成为机械制造业的标志性装备.
我国目前的现状是 [3] :国内数控技能人才严重缺 乏,阻碍了我国制造实力的提高,教育部等六部委启动 了“制造业和现代服务业技能型紧缺人才培训工程”, 对高技能型人才的培养提出了具体的方案。许多高职 院校根据自身特点、结合市场需要,开设了数控技术专 业,为满足实践教学,除设置实训基地外,还相继配备 现代化的数控机床等设备。数控机床是精密的机电一 体化产品、价格昂贵,其管理和维修要求严格,如何管 理和维护好这些数控机床,使之更好地满足教学需求, 最大限度地发挥其优势,已经成为各个学校普遍关注 的问题。本文经对各校教学实训基地的调研,根据数 控机床的结构原理及使用特点,结合设备管理方面的 实践经验,分析了教学用数控机床使用中出现的问题, 并提出了改进措施,以供同行参考.
1教学用数控机床的特点 教学用数控机床与生产用数控机床相比主要有下 列特点:1)使用目的不同。生产用数控机床的主要 目的是提高生产效率,创造更多的经济效益,以生产为 主。教学用数控机床主要是用于满足教学工作,将学 生的理论知识通过实际操作转变为直观认识的机床, 是一种以试验为主的机床。2)操作人员不同。生产 用数控机床的操作人员,一般是具有丰富实践经验的 工人。教学用数控机床的操作人员,大部分是新手 ——学生,第一次将理论知识转化为实践的操作,经验 很少,所以故障率较高。3)维修和管理方式不同.
生产用数控机床往往配有专业的维修人员,一般都是 有计划、系统性的管理和维修。教学因数控机床缺少 专业人员进行管理和预防性维护,往往是故障发生后 再去弥补,很少将故障消除在萌芽状态。4)使用效率 不同。与生产用数控机床相比,教学用数控机床作为 一种演示型机床,大部分时间处于停工状态,机床的利 用率不高,可能造成资源浪费.
2存在问题 通过兄弟院校相关人员间的教学交流,结合我们 的教学实践经验,教学用数控机床在管理和使用的问 题概括为:1)机床运行中事故较多,例如撞车、撞刀、超 程等现象频繁发生,导致机床精度下降。2)机床发 生故障后,不能及时得到有效处理,机床带病、带伤工 作情况较多,最终导致机床发生破坏性的故障,造成巨 大损失。3)管理方面存在漏洞,对机床的维护缺少系统 性、计划性,不能起到预防故障的作用。4)机床操 作人员和维护人员责任性不强,当出现问题时,不是积 极地去处理,而是相互推卸责任,直接影响正常的教学 工作。5)维修不及时,学生上课时间不合理、甚至出 现冲突时,有些教师责任心不强,为了图省事赶课时, 将多个小组合并上课时,出现多名学生围着一台机床 的现象,教学效果很差。6)通过调查,学生反映实训 效果不太好,与预期目标相差很大,从而得不到应有的 教学效果。
以上诸多原因导致机床“停工”现象严重, 学生学不到实质性的东西,使数控机床不能发挥应有 作用,造成了资源的浪费; 3原因分析 教学用数控机床的管理和维修方面存在的问题, 其原因虽多种多样,但可归纳为:1)管理人员没有经 过专门培训,缺少设备管理方面的专业知识,对数控机 床没有制定严格的点检、维修计划,又碍于面子不去向 别人请教,导致维修人员不能及时排除故障,延误了故 障的排除,直接影响正常的教学。2)管理人员缺乏责 任心,对机床了解不够,工作没有计划性,是造成机床 维护缺少系统性、预期性的主要原因。3)维修人员自 身责任性不强,技术水平低,不能及时处理工作中出现 的故障,是机床带病工作的主要原因。4)学生在实训 前准备不充分,操作时粗心大意,不按规定的步骤操作 等,是导致机床运行过程中发生撞刀、撞车、超程现象的主要原因。5)教师自己缺乏实践经验,对机床的结 构、原理理解不够深入,讲课缺少灵活性,对一些结构、 原理性的问题解释不清楚。学生实践经验本来就较 少,学习主动性又较差;是学生感到难以接受的主要原 因。6)教师和学生对实训工作不够重视,只求单纯完 成任务,很少考虑教学效果,是影响教学效果的主要 原因.
4改进措施 根据以上分析,结合实际情况,提出如下改进措 施:1)聘请专业人员对设备进行管理,制定科学的管 理方法。根据各类数控机床的不同特点,结合自己的 实际使用情况,参照机床说明书,制订出合理、规范的 数控机床管理和维护制度,对设备的保养维护做到三 定,即定期、定级、定人。2)要重视“双师型”教师队伍 的建设 [4] 。数控机床是集机、电、液、气于一体的机电 产品,具有技术与知识密集的特点;要求数控机床的操 作与维修人员,不仅要具备各方面的知识,也要具有丰 富的经验和较强的动手能力;建设技术全面的教师队 伍是科学管理,合理维护数控机床的前提。3)提高操 作人员的责任心,出现问题时要积极的去处理,实在解 决不了的要及时找别人帮忙解决,防止机床带伤、带病 工作,以免影响正常教学工作。4)选拔责任心强的教 师进行定期专业培训。实践证明经过培训学习,是能 在相对较短时间内达到数控机床操作和维护要求的.
5)在教学和维修之间灵活安排工作,做到教学、维修 两不误,例如可利用教学期间机床利用率不高的时间, 对机床进行一些常规维护和检修。6)实训之前,要对 学生进行安全教育,学习操作规程,强调严格按照规程 操作的重要性;如果有条件的话,可先让学生在计算机 上进行仿真模拟练习,用以防止撞刀、撞车等事故的 发生 [5] .
5结束语 1)数控机床的管理和维护是一项很重要的工作.
数控机床工作原理篇3
关键词:数控机床 故障分析 诊断方法
中图分类号:TG519 文献标识码:A 文章编号:1007-9416(2013)02-0007-01
1 引言
在数控车床的使用过程中,经常会出现一些故障性的问题,如果对这些故障不能进行及时的处理和诊断,对于零件加工的精度会有重要的影响,甚至会对数控车床的加工效率或者是寿命产生很大的影响。所以我们必须认真的对待数控机床发生的故障,及时对故障进行总结和排除,以便更好的提高车床的加工效率,延长车床的寿命。
2 数控机床的基本原理
数控车床进行零件加工操作的时候,操作者首先需要根据零件的设计图纸进行加工方案的制定,然后根据进行加工的零件所制定的方案编写出相应的精加工程序。在车床控制装置编辑的状态下,对编写好的程序输入到数控车床的控制系统之中。经过数控车床的控制系统对所输入的程序进行分析和处理之后,可以根据运算结果以数据的形式分配到机床的各个坐标的伺服系统中。机床的各个坐标的伺服系统在受到一定的数字控制信号之后,会通过系统传递到各个部件中去,这样数控车床就会自动的按照所给出的时间、顺序、速度进行加工,从而得到合格的产品。
3 数控机床故障诊断的基本原则以及方法
3.1 数控机床故障诊断的基本原则
对于数控车床来说,机床的诊断是进行故障排除的先决条件,对机床的故障进行科学的诊断,我们往往需要遵循以下几条原则:
从外部到内部的诊断原则:随着数控车床的技术不断的更新和完善,车床本身所具有的故障率也有了明显的下降。大部分的车床故障都不是车床本身的系统故障所导致的。维修人员在进行车床的故障排除的时候,要按照
从主机到电气的诊断原则:对于一般的数控车床来讲,由于主机的故障比较容易诊断排除而数控系统以及电气系统的故障诊断难度相对比较大。这样我们在进行诊断的时候就要遵循从主机到电气的原则。因为从实际的例子统计来看,大部分的数控机床的故障都是因为主机的失灵而造成的。所以在进行故障的诊断之前,就必须考虑到机床机械性的故障排除。
从静态到动态的诊断原则:当数控车床出现问题的时候,就必须对数控车床进行断电状态下的处理,在静态下对数控车床进行观察和分析。当我们确定通电后不会对机床造成更大的故障和二次伤害的时候,可以对机床进行通电测试。在通电的状态下,对机床进行动态的分析和测试。这样的从静态到动态的故障诊断原则是确保机床的安全,不会出现故障状态下运作的故障扩大。
从简单到复杂的诊断原则:当机床出现故障的时候,大部分的时候仅仅一处的故障就可以影响到数控机床的加工。但是我们也不能排除有多处的故障的可能性。所以在进行故障排除的时候要遵循从简单到复杂的原则。要先对那些相对比较简单的故障进行分析和排除,然后解决那些相对比较难的故障。同时在对故障进行分析的时候要先考虑那些原因相对比较简单的故障,再对那些相对比较复杂的故障原因进行分析。
3.2 数控车床故障诊断的基本方法
数控车床的机械故障的诊断,是进行故障排除的先决条件,所以,故障的诊断方法相对来讲就显得比较重要。现在通常采用的故障诊断方法有以下几种。
直观诊断法:直观诊断法主要是对有故障的车床采取目测、手摸以及通电等等的方式进行故障的初步诊断。
自诊断功能法:在数控车床的系统中有一个自诊断的功能,合理的使用这项功能可以很好的根据其显示的内容进行故障的大体原因的诊断。
交换诊断法:这种方法值得是将车床上具有相同功能的模块进行位置上的兑换,对故障转移的方向进行检测和跟踪。从而确定故障发生的具体部位。
仪器测量法:当车床发生故障之后,可以对车床使用电工的常用工具进行检测。主要对故障部分的电压、电源等等的项目进行检查。
敲击诊断法:车床的各部分控制系统都是由电路板组成的。各个电路板之间有一定的焊接点,电路板上的焊接点出现问题则会出现车床的运行故障问题。所以可以使用绝缘物对车床的焊接点进行拍打。如果故障加重就可以确定故障出现的位置。
4 数控车床的常见故障分析及其排除
(1)数控车床主轴电机的故障.数控车床大部分都是采用变频调速电动机,其具有稳定性好、无转差损耗、价格低等等机械特性。这种电动机常见的故障有点击噪声、发热以及震动等等。针对故障的噪声,往往都是由于电动机的轴承损坏或者是缺少油等原因。针对这样的故障只要更换轴承或者是加换油就可以。而针对震动的故障,往往是由于电机的皮带轮与电机轴之间的间隙过大或者是电机紧固螺栓松动的问题。这样的话可以针对相对应出现问题的地方进行相对应的更换就可以。针对电机的发热问题。往往都是因为电机的轴承损坏或者是间隙过大引起的转动问题以及风扇的损坏。这样只要进行相对应的更换也能很快的解决这些问题。
(2)数控车床工作台的故障.数控车床在进行零件的加工的过程中,很可能会出现工作台忽然停止的现象或者是步进电机抖动不转的现象。这都是由于工作台的机械故障所引起的,而由于控制系统所引起的故障是极少数的。这样的情况下,要将工作台退回到原点,重新启动。如果仍旧出现相同的问题,我们可以大体上断定是机械的故障问题,这样的话在进行了相对应的机械元件的检查之后,只要对某些元件进行更换或者是保养维修就可以排除这样的故障。
(3)数控车床刀位的故障.在很多的时候,电动刀架在进行换刀的操作的时候会出现换刀的操作旋转不能停止的现象,当出现这样的现象的时候,一般的主要原因会是当程序在调用某一个刀号的时候,由电动刀架正转选择刀具,当旋转的位置达到这个刀具的时候,无法获取相应的信息从而使得刀具的定位出现了问题。这个时候,应该对刀架上的霍尔元件进行相对应的检查。因为当霍尔元件损坏的时候,对刀具就无法输出一定的检测信号,从而出现了刀架的旋转不止的现象。这个时候,只要对霍尔元件进行更换就可以排除故障。
参考文献
[1]王昕.数控车床故障分析与提高可靠性的措施[J].机床与液压,2008.
[2]闫恩刚.数控车床故障的分析与诊断[J].CAD/CAM与制造业信息化,2011.
数控机床工作原理篇4
关键词:数控机床;故障;分析;维修
前言
数控机床已经广泛应用于现今各行各业的生产中为工业生产的腾飞提供了不小的助力,但是数控机床集成度和自动化程度提高的同时也使得数控机床的复杂性大幅提高,当数控机床出现故障时也对数控机床的维修提出了不小的考验。本文将在分析数控机床常见故障的基础上对如何做好数控机床的维修进行分析阐述。
1 数控机床常见故障分类
数控机床常见故障根据其发生的特点、原因等可以将其分为:(1)系统软、硬件故障,数控机床软件故障指的是数控机床其自身的数控系统软件部分所带来的故障,在维修数控机床软件故障时无需对数控机床的硬件设施进行修理,仅需要在分析数控机床PLC程序等的基础上对数控机床的参数或是PLC程序进行改动即可消除故障、而数控机床硬件故障则主要指的是数控机床的控制模块等出现硬件性损坏,需要将故障硬件拆下修理后才能继续使用。(2)数控机床的机械故障,此类故障主要是由于数控机床的机械磨损、机械撞击等所造成的损坏,在维修时需要对数控机床机械磨损区域或是撞击区域进行修复以此来恢复数控机床的正常使用。(3)有无诊断报警的故障,现今的数控机床控制系统中都编制有详细的数控报警信息,用户可以根据数控报警信息来对数控机床的故障发生区域进行诊断以此来缩小故障诊断范围。但是在一些数控机床的控制系统中,并未对数控机床的报警信息进行详细的解释,需要数控机床维修人员查找相关资料来予以解决。此外,根据数控机床故障发生的类型可以将数控机床的故障分为机械故障和电气故障两大类。
2 数控机床电气故障原因分析及查找
2.1 数控机床电气故障原因查找前的准备工作
前期的准备工作对于数控机床电气故障的排除有着极为重要的意义,当数控机床出现故障时,应当保持数控机床现场的故障状态等待数控机床维修人员到达现场,从而有利于数控机床维修人员根据现场的实际情况对数控机床故障发生的原因进行初步的判断,在对数控机床维修时,数控机床维修人员需要对数控机床故障出现的指示情况及数控机床故障发生的背景情况进行仔细的了解,从而掌握第一手的资料为数控机床的维修打下良好的基础。在维修人员到场对数控机床操作人员进行情况了解的过程中,数控机床维修人员需要在与悼鼗床操作人员的交谈中捕捉到有用的信息,从而做出自己的判断以确保数控机床故障情况的准确性与完整性,此外,在数控机床故障原因查找的过程中数控机床维修人员不能盲目的对数控机床故障进行处理,而是应当对可能造成数控机床电气故障的原因进行详细的测量,以免盲目操作而造成数控机床故障复杂性的增加,提升数控机床故障排查的难度。一般来说,对于数控机床所产生的故障数控机床的数控系统中都是带有提示的,应当通过数控机床中所显示的故障报警信息查找相关的数控机床数控系统诊断手册从而对数控机床电气故障的触发因素进行了解,从而便于数控机床维修人员结合保障进行来对数控机床进行故障排查。
2.2 数控机床的故障排查
在数控机床的故障排查中,需要通过问询操作者数控机床故障前后设备的运行情况是否有异常情况,以确定数控机床所产生的故障时偶发性的故障还是经常性故障,在数控机床故障发生时是否有异兆,在数控机床故障发生时是否有其他异常操作或是异常情况等,这些信息对于快速、准确的定位数控机床故障位置有着极为重要的意义,此外,在对数控机床进行故障维修时应当在安全的前提下注意观测数控机床在运行的过程中是否有异常声音及其他的一些异常信号,在切断电源后,数控机床维修人员可以通过闻电气控制系统中是否有焦糊味以及触摸数控机床的电机、变压器以及熔断器等查看其是否有过热现象。在数控机床电气系统的维修过程中,数控机床维修人员需要对数控机床数控控制系统中的各部分的电气构造及原理进行充分、全面的了解,以便在数控机床故障排查中可以通过数控机床电气设备的控制原理来实现对于数控机床电气故障原因的查找。在数控机床电气故障的排查中,对于机床厂家所编制的用户报警可以通过对PLC报警的触发条件进行逐项排查从而找出造成数控机床电气故障的故障点,从而实现对于数控机床电气故障的排除。而对于一些数控机床数控系统的系统性报警,则应当根据系统报警信息来查找相关的报警诊断手册以此来确定数控机床系统报警所代表的意义和可能的原因,并结合数控机床的电气控制原理来查找相应的故障点。在对数控机床的电气故障进行排查的过程中,都需要从数控机床设备的动作原理入手来进行分析以此来缩小数控机床故障查找的范围,而后通过数控机床电气故障所产生的信息对数控机床故障原因进行逐级的排查,根据数控机床报警细节最终找到数控机床电气故障的故障点,而后采取相应的处理措施来排除故障。此外在数控机床电气故障的排查过程中需要注意的是一些关联性报警信息,这些数控机床报警所显示的信息并不是数控机床的直接报警而是由直接故障点所引出的一些关联性的报警信息,从而为数控机床的故障排除带来了不小的难度。在排除此类故障时,数控机床维修人员需要通过对数控机床故障信息进行细致的分析找出造成数控机床故障报警的真正原因从而实现对于数控机床故障的排除。
3 数控机床故障检修中的注意要点
数控机床的控制系统极为复杂,在对数控机床控制系统进行拆卸的过程中需要注意做好记录并注意避免破坏数控机床设备的内部结构,对于数控机床电气控制元件拆卸下来的部分需要做好分类、保存以免丢失而对后期的维修造成影响。在对数控机床电气控制系统进行测量的过程中需要注意的是对于带有阻值的线路进行测量时应当处于下电状态,避免带电测量。在对数控机床的控制电路板进行拆卸的过程中需要注意不得损坏电路板,在拆卸的过程中需要注意做好各线路上的开关、跳线等的位置,以便在数控机床电气控制系统恢复的过程中将其恢复的原来的位置,在数控机床电气设备的检修时需要进行两极以上的对照检查,需要注意对各板上的元件进行标记,避免元件错乱。在查清线路板上的电源配置后数控机床检修人员需要根据检查的需要对线路板采取分别供电或是全部供电的方式来对数控机床的控制电路板进行检测,查找故障点。此外,在数控机床维修的过程中尤其需要注意的是避免触碰数控机床中的380V/220V等的高压部分,以免造成安全事故。
4 结束语
数控机床的控制系统极为复杂,在对数控机床进行故障排除的过程中需要从数控机床故障发生的现象入手从数控机床故障发生的原理进行分析查找故障发生点,由于数控机床涉及到机械、电气、液压、气动等多方面的因素,在对数控机床进行故障排查的过程中需要进行综合的考虑,确保数控机床的正常运行。
参考文献
[1]王永涛.机床电气设备故障分析与维修[J].科技与企业,2015(4):232-232.
数控机床工作原理篇5
[关键词] 机床坐标系 机床参考点 工件坐标系 之间的关系
在多年的数控编程理论和实践教学中,笔者发现,许多学生只注重数控编程的学习,而对坐标系的设置只是机械的照搬,对各坐标系的原理和它们之间的关系却不求甚解,虽然经常强调,但在思想上还是引不起足够的重视,致使在实际使用的时候不知所措。
那么什么是机床坐标系?什么是机床原点?什么是机床参考点?它们与设置工件坐标系又有什么关系呢?
机床原点为机床上的一个固定点,也称机床零点或机床零位。是机床制造厂家设置在机床上的一个物理位置,在数控车床上,一般设在主轴旋转中心与卡盘后端面之交点处。以机床原点为坐标系原点在水平面内沿直径方向和主轴中心线方向建立起来的x、z轴直角坐标系,成为机床坐标系。建立机床坐标系,其目的(功能)有三:
一、机床坐标系是制造和调整机床的基础
不论是普通车床还是数控车床,在车床硬件组装和调试时,都必须首先建立一个工艺点(或坐标系),以此为基准来调整和修调一些工艺尺寸诸如机床导轨与主轴轴线的平行度、导轨与主轴的高度、尾座顶尖与主轴是否等高、主轴的径向跳动量、轴向窜动量等等。这是一个固定点,这个工艺点一旦确定,一般不允许随意变动。
二、建立机床与数控系统的位置关系
我们可以把数控车床分为三大模块,一是数控系统(软件),二是车床本体(硬件),三是被加工工件(浮动件)它们分别有三个坐标系,即程序坐标系、机床坐标系和工件坐标系。
数控机床上电后,三个坐标系并没有直接的联系,因此每次开机后无论刀架停留在机床坐标系中的任何位置,系统都把当前位置认定为(0,0),这样会造成坐标系基准的不统一,数控车床一般采用手动或自动方式让机床回零点的办法来解决这一问题。
其原理是将刀架运行到主轴旋转中心与卡盘后端面之交点处(机床零点),这时溜板碰到了已预先精确设置好的行程开关或机械挡块,信号即刻传送到计算机系统,系统复位,此时crt上显示系统已预设置好的x0.000、z0.000坐标值,使机床与系统建立了同步关系,也就是让系统知道了机床零点的具体坐标位置,建立了测量机床运动坐标的起始点。此后crt上会适时准确地跟踪刀架在机床坐标系中运动的每一个坐标值。
但是,由数控车床的结构分析可知,将刀架中心点(对刀参考点)运行到主轴旋转中心与卡盘后端面之交点处是不可能的(会发生机床干涉),故此我们在机床坐标系x、z轴的正方向的最大行程处设立一个与机床坐标系零点之间有精确位置关系的工艺点,并用行程开关或机械挡块或栅尺定位。这个点我们把它称为针对机床零点的一个参考点。当数控装置通电后让刀架回机床参考点,实际上就达到了机床回零的同样的效果。
由此可知,机床参考点和机床零点之间是有着密切联系的两个点,机床参考点也是机床上的一个固定点,是数控机床出厂时已设定好的,该点是机床坐标系的x、z轴的正方向的最大极限处的一个固定不变的极限点。其位置由机械挡块或行程开关或栅尺确定。以参考点为原点,坐标方向与机床坐标方向相同,所建立的坐标系叫作参考坐标系。
三、机床坐标系也是设置工件坐标系的基础
在普通车床上加工工件,由于都是靠手工操作,所以对工件坐标系没有太多的要求,但在数控车床操作中,数控系统根据所输入的工件程序,通过系统运算后,数控深孔钻床安全操作的程序 (菁华1篇)由数控装置来控制数控车床的执行机构按工件程序的轨迹运动,来达到对工件加工的目的,但数控车床各个轴的运动都是按机床坐标系进行运动的。当工件在车床上安装后,虽然工件全身置于机床坐标系中,但具体在机床坐标系中的位置并没有得以确认。也就是说机床坐标系与工件坐标系之间还没有建立有机的统一。以机床
在实际操作中,人们通常采用试切对刀法来解决这一问题(确定工件坐标系在机床坐标系中的具体位置)。
我们可以在所装工件上任取一特殊点(一般是工件的左端或右端),这一点我们称为工件坐标系原点,它是工件上所有转折点坐标值之基准点,(为了提高零件的加工精度,避免尺寸换算和基准不重合误差等,工件原点应尽量设定在零件的设计基准或工艺基准上)。以此点建立的坐标系,称之为工件坐标系。在手动方式下,分别用车刀试切工件的端面和外圆找到工件原点,测量出工件原点到机床原点在x、 z方向间的距离,这个距离称为工件原点偏置值,即机床原点在工件坐标系中的绝对坐标值。将这个偏置值预存到数控系统中,加工时,工件原点偏置值能适时自动地加到以机床坐标系运动的各轴上,使数控系统通过机床坐标系+工件偏置值来确定加工工件的各坐标值。通过这些操作,我们又建立了工件坐标系与机床坐标系及数控系统之间的联系。
不过由于各厂家的习惯不同,机床零点参数设置不尽相同,crt位置界面显示值也不一样,大多数数控车床会参考点后crt显示为x0.000、z0.000,表明机床坐标系零点与机床参考点重合。也有少部分车床参考点与之相反,crt显示为参考点到机床零点的实际距离,比如x600.000、z1010.000。即机床坐标系零点与机床参考点分离。
由于数控车床的机床零点和参考点设置的不同,在设置工件坐标系时,也就出现了不同的情况。
一、机床坐标系零点与参考点重合
机床上电后,执行机床回参考点操作动作,当刀架移动到x、z轴正向最大行程处时,装在纵向和横向拖板上的行程开关碰到了机械挡块,瞬时向数控系统发出信号,由系统控制拖板停止运动,既回到了参考点,并且以此点为原点建立了机床坐标系,此时crt显示x0.000、z0.000(如图1所示),即机床坐标系零点与参考点重合。此后,刀具及x、z轴的移动范围以及工件的放置位置都在机床坐标系的负方向。
如果我们用g54设置工件坐标系,用刀具试切工件外圆和右端面,当刀具移至试切点a,此时crt显示xj=-210.538, zj=-200.347,测量工件直径为ф24.426,那么:
x方向的零点偏置值x =-xj-ф=-210.538-24.426(直径值)=-234.964………(1)
z方向的零点偏置值z =-zj-0=-200.347-0=-200.347……………………………(2)
将x=-234.962、z=-200.347输入到g54下的相应位置中,系统即刻由机床坐标系转换成了以o为原点的工件坐标系,即工件坐标系设置完成。
(事实上,找工件原点在机械坐标系中的位置并不是求该点的实际位置,而是找当刀位点到达工件(0,0)时,刀架上的参考点在机床坐标系中的位置,这里不详述。)
图1 机床坐标系零点与参考点重合
二、机床坐标系零点与参考点分离
机床上电后,执行机床回参考点操作动作,当滑板移动到x、z轴正方向最大行程处时,装在纵向和横向拖板上的行程开关碰到了机械挡块,瞬时向数控系统发出信号,由系统控制拖板停止运动,表示回到了参考点,此时crt显示如x600.000、z1010.000(如图2所示),由crt显示可知,车机床参考点距机床零点的距离在x方向为600.000,在z方向1010.000,说明机床坐标系零点与机床参考点分离。车床参考点仍设在机床坐标系x、z轴的正方向的最大行程处,而车床的机床原点则定义在主轴旋转中心线与卡盘后端面的交点处。由此看出,刀具及x、z轴的移动范围以及工件的放置位置都在机床坐标系的正方向。
同样,如果我们用g54设置工件坐标系,用刀具试切工件外圆和右端面,当刀具移至试切点a,此时crt显示xj=295.933,zj=150.0,测量工件直径为ф84.723,那么:
x方向的零点偏置值x =xj-ф=295.933-84.723(直径值)=211.211…………(3)
z方向的零点偏置值z =zj-0=150.0-0=150.0……………………………………(4)
将x=211.211、z=150.0输入到g54下的相应位置中,系统即刻由机床坐标系转换成了以o为原点的工件坐标系,即工件坐标系设置完成。
图2 机床坐标系零点与参考点分离
由上述分析可知,数控车床的机床零点和参考点的重合与分离,直接影响着零点偏置值的确定,直接关系着工件坐标系的设置,在实际操作中要根据不同的数控车床区别对待。
综上所述,由机床回参考点操作,我们建立了数控系统(软件)与数控机床(硬件)之间的联系,又通过对刀操作建立了数控机床与工件(浮动件)之间的联系,换言之,将输入数控系统的所编程序的坐标系和机床坐标系、工件坐标系达到了有机的统一(前题是工件坐标系和编程坐标系是一致的),又通过系统对所编工件程序各数值的计算,驱动机床上的伺服机构带动刀具,将工件完全“复制”出来。
通过上面的论述我们可知,在学习数控编程和操作时,各坐标系之间的关系是何等的重要,如果深刻的理解了机床坐标系、机床参考点与工件坐标系的关系,在理论学习中许多问题可以迎刃而解,在实际操作中对不同的数控机床将会灵活运用,对我们更好地理解掌握数控机床的加工原理,以及在处理加工过程中的许多问题都有很大的帮助。
参考文献:
数控机床工作原理篇6
[关键词]数控仿真软件;数控机床;教学实践
中图分类号:H319 文献标识码:A 文章编号:1009-914X(2014)18-0227-01
主要内容:
工业化和自动化已经成为制造生产领域的发展主题,随着智能加工理念和自动化加工需求的不断深化,以数控机床为代表的新一代自动加工设备开始在制造业中普及开来。我们可以看到数控机床在集成了柔性加工、多维加工、曲面加工和多轴联动等最新加工技术的同时,还兼容了数字编程和辅助设计等功能,这使得每一个数控机床都能成为一个不同规模的加工中心,满足不同的加工需求。但是正是由于数控机床的功能多样性,使得数控机床的操作要求十分严格,操作者不仅需要具备扎实的机械加工基础知识和操作技能,还需要对数控编程技巧、数控加工技术原理和加工工艺制定等具备一定的知识储备,这就对当前的数控机床操作人才的培训模式提出了很高的要求,如何进一步强化数控机床操作人才培训的有效性和成材率,这将是本文要集中探讨的话题。
一、数控仿真软件概述
从技术层面来看,数控仿真软件集成了虚拟现实技术和计算机图形学技术,并且能够实现虚拟现实的数控机床操作试练。虚拟现实技术通过量化实际系统的系统参数、系统环境、声光电等现象,能够真实的还原系统操作环境,给与操作者以极高的真实体验;可以对设备进行操纵,可以查看生产过程、实验过程、施工图过程、供应过程等活动的各种技术参数的动态值,从而确认现实系统是否有能力完成预定的任务和如何去完成,也可从中发现运动过程的缺陷和问题,予以改进。
目前来看,数控仿真软件主要包括了两种,一种是模拟数控机床加工环境和加工过程的虚拟数控机床仿真软件,另一种就是以零件设计和加工程序为主线的CAD/CAM一体化软件。数控机床仿真软件能够让操作者快速熟悉数控机床的结构组成、工作流程和操作要领,通过外接数据库,能够对当前主要的数控机床进行针对性培训,效果十分突出;零件加工仿真软件则将重心主要集中在零部件设计、零部件加工工艺设置、数控加工程序编制等环节上,目前常见的零部件仿真软件主要有solid edge、Pro/engineer、MasterCAM、Solidworks、CAXA等,这些仿真软件能够让操作者快速熟悉机械加工过程,培养机械专业技能。
二、数控仿真系统在数控机床教学实践中的应用
在目前的数控机床操作人才培训中,主要也是针对上述两种仿真软件形式,进行针对性极强的教学实践培训,详细应用内容如下所述:
1)数控机床仿真软件在数控机床实践教学中的应用
数控机床仿真软件是基于虚拟现实系统平台而搭建起来的操作系统,它可以在虚拟现实数控机床数据库的支持下,完美的再现当前主要数控机床的结构组成和工作环境,在数控机床的教学实践过程中,首要科目是要熟悉数控机床的结构组成,受到经济条件的限制,多数数控机床加工学校很难对当前的各种类型的数控机床进行现场拆装,数控机床仿真软件中的模块分解过程能够实现全息装配过程,仿照真实数控机床零部件尺寸,进行的实际工业化装配流程的演练,能够进一步加深学生对于数控机床的进给系统、多轴联动系统、曲面加工系统的空间形象的理解;其次是典型加工工艺的教学实践,数控机床仿真软件能够对工件毛胚定位、工件装夹、夹具工作原理、压板安装流程、加工基准对刀原则、刀具安装和选用规范、机床手动操作和自动操作指令条码等,进行逐一的繁复讲解,而且允许学生在课后进行温习和尝试;再者是完善的图形数据和加工标准数据库资料,使得学生可以在仿真软件自带的典型数控机床编程程序的指导下,进行实际编程,并且在虚拟加工平台上,对自定义的工件进行工艺设定,并且检查加工工件的尺寸误差和质量达标情况;该仿真软件系统结合自动化考核系统,能够实现教学、实践和考核一体化的培训模式。
2)零部件加工仿真软件的教学实践应用
熟知零部件的造型原理和加工工艺流程是保证数控机床操作者能够进行复杂加工过程的技术基础,零部件加工仿真软件为学习者提供了一个高仿真度的零部件数模设计,包括了曲面造型设计和参数化设计这两种主要的形式,对于简单曲面造型和复杂曲面的造型原理都能有一个清晰的理解过程;其次是对零部件加工工艺的熟悉过程,工件加工的第一道工序是要进行基准对刀,不同的零件对刀的原则和位置选择都大相径庭,比如轴对称零部件、杆件、板件、螺旋件以及内内孔加工等等,这都需要学生们在平时的学习过程中熟练的分析不同类型零部件的加工工艺选择准则;再者是对数控加工刀具的走刀过程和走刀程序进行针对性的讲解,这种直观的培训模式有助于学生养成数控加工思维,结合实践性极强的零部件金工实习,使得学生们在自己动手加工典型零部件时,对于零部件造型保持的关键性因素、令不加加工失效的主要原因以及加工过程的重点注意事项都能有一个直观而且亲身经历的过程,经过这种培训模式所培养出来的数控机床操作人才将兼具专业知识背景和机床操作技能,能够适应快节奏、高技术含量的操作需求。
总结:
随着自动化技术和机械加工技术的不断发展,数控加工已经成为机械加工领域使用最为广泛的技术形式。数控机床的使用需要一定的专业知识背景和操作编程经验,相关操作技术人员已经成为当前机械加工市场的稀缺人才。本文概述了数控加工仿真系统在数控机床教学领域的应用现状,并就完善数控仿真软件的教学价值提供了新的思路。
参考文献
数控机床工作原理篇7
关键词:PLC;数控机床;控制系统
1、可编程控制器
可编程控制器简称PLC,普遍被运用在内部程序的存储工作中,为系统提供了良好的编程条件,用户可以借助该存储器进行计数、算数操作、逻辑运算等活动,而通过输入定时、顺序控制等指令后即可生效,而生产过程中可以依靠PLC进行数字、模拟方式的输入/输出控制。PLC数控机床利用了传统数控机床的优势,同时嵌入了先进的PLC技术、通讯技术、计算机技术,发挥自动控制和微电子的作用,使其满足数控机床运行和新型工业生产的双重要求。
2、数控机床
数控机床以机床本体为基础,通过核心部分数控装置来发号和控制驱动机床,伺服系统发出指令后驱动机床会按照标准流程来执行,数控机床依靠三大主体部门来发挥职能作用,而数控系统会控制机床内部,以数字输入的形式来完成信息输出与输入工作。
3、数控机床控制系统
3.1 数控机床控制系统结构组成
数控机床控制系统结构如图1所示,通过输入信息到数控装置中,使其作用于PLC、主轴控制单元、速度控制单元以及伺服电机,机床电器逻辑控制装置,位置检测反馈装置会通过数控装置将信息输出,完成整个系统的联通工作。
3.2 数控装置的组成
微型计算机为数控装置提供了稳定的基础和条件,使其能满足各项数字控制活动要求,而数控机床通常简称为CNC,它拥有微型计算机机构和数控装置功能模块两大主要部分,为系统运行提供了输入/输出装置、存储器、接口以及总线、中央处理单元,但是针对单一或复杂命令的执行都要启动软件和硬件双重装置,在系统程序的指挥下完成,而控制和管理软件会协调和指挥硬件。
4、基于PLC数控机床控制系统的设计
我们在数控机床控制系统中嵌入可编程控制器,以变频器、电机、光栅尺等装置为主,保持系统的全封闭循环空间,通过存储器编程来加强数控系统的精度,不断增加适用对象数量。数控机床本身能够检测刀位情况,操作换刀、断刀等活动,还能检测和连接通信,进一步提升了数控机床的性能和作用,在实现生产自动化的过程中降低成本、提高生产效率,保证数控机床系统的正常运行。
4.1 硬件结构
针对数控机床的硬件设计利用机械部分为基础,通过硬件电路和上下位软件来完成整体构造,数控机床控制系统中的硬件电路发挥着机床驱动的作用,同时能为各部门传递有效的信息,为系统提供最稳固的保护。机械手换刀、断刀检测都是硬件部分提供的功能之一,气缸外壁的电磁感应系统会控制并显示机床机械手的位置,而光纤传感器会随时检查刀具的情况。
4.2 系统初始化
系统初始化会提供工作原点复位和机床原点复位两项选择,如图2所示为系统坐标系示意图,在工件原点中放置毛坯和芯模,通过工件、工作和机床三大坐标来完成系统指令。机床原点的复位操作通过数轴的极限开关来控制,而按下复位按钮后机床就会回到初始原点,准确定位旋压加工位置。机床坐标系为整个机床坐标复位工作提供了有效的参照,保证机床待机加工前后的位置符合生产标准,减少位置误差。机床运行过程中零件装卡无恙以及旋压制品装卸正常的基础上要减少原则和位置距离,使得加工起始位置能满足设定原则,机床功能在考虑硬件结构的基础上挖掘可编程控制器的作用。
4.3 系统功能模块设计
针对系统功能模块的设计要同时满足硬件和软件双重要求,而只有符合系统运行和硬件结构的软件才能使用于机床中。嵌入下位机软件的过程中需要满足许多条件,当将其放置到SIMO-TIOND环境中时,下位机会接收来自各部门的数据,将机床运行状态和部件执行情况监测出来。
数控机床工作原理篇8
【关键词】限位;故障;分析;处理
0.概述
数控机床是集现代机械制造、自动控制、计算机技术、精密测量等多种技术于一体的自动化设备,故障具有隐蔽性、复杂性,与普通机床相比,在维修理论、技术和手段上有着较大的差异[1]。面对机床种类繁多,故障现象千差万别,最重要的是要有一个明确的故障判断思路:“立足原理—PMC定位—快速排除”。为了保障机床安全运行,机床的直线轴一般设置有软限位、硬限位或者软限位硬限位结合的行程保护“防线”。由于限位工作元件安装在机床的工作区域,受冷却液、铁屑等环境的影响,使限位故障成为数控机床常见故障之一。下面以FANUC数控系统为例,从机床限位的工作原理出发,对导致“限位报警”的主要原因作一些分析和说明。
1.限位问题的分析与处理
1.1硬限位(行程开关限位)
硬限位是常用、较有效的限位方式之一,故障率也相对较高,主要是限位元件受工作现场环境影响较大、也有元件质量的因素。容易造成控制电路断路或限位元件损坏。机床厂家常用的硬限位有以下两种控制方式。
1.1.1“软硬”相结合的控制方式
采用梯形图逻辑控制(软件)、限位开关(硬件)、参数设置相结合的方式。这类机床有行程开关,一般都安装在旁边的保护盒中,由于机床长期工作,冷却液、铁屑、油泥等未能及时清除而积累使工作环境变得恶劣。维修时一般采用先软件后硬件的方法。由PMC判断故障位置,然后用万用表确定。例如:安阳机床厂生产的CK6152数控车床,发生“OT0507:X轴负向超程”报警,机床停止工作,但该机床X轴实际位置还处在正常的工作范围内[2]。根据该机床的电气原理图(见图1),查找机床运行的PMC程序(见图2)和参数3004#5=1,可以判断该机床采用的是软硬相结合的控制方式。
图1 硬限位电气原理图
图2 硬件超程保护梯形图
先通过PMC进行故障定位,首先按SYSTEM键选择PMC的子菜单PMCDGN,选择STATUS子菜单进入状态监控画面,搜索X超程信号,观察X超程信号的状态,然后用FORCE来判定是电气故障还是内部软件故障;若故障,用万用表测量行程开关常闭触点的通断即可对故障定位、排除;若内部问题利用TRACE信号追踪功能,观察超程信号逻辑状态,然后修改其状态。在“PMC在线”中我们搜索到到X9.3信号,
电平有效,用FORCE强制X9.3为“0V”,报警消除,即我们判断应该为电气硬件问题。通过万用表测量SQ3输入电源+24v正常,输出端子为0v,为了进一步确认,我们把SQ3的输出与+24v短接,报警消除,由此我们可以确定是SQ3行程开关故障。打开X轴行程开关的保护盒,取出行程开关,X轴负向的开关触头由于铁屑和渗水不能灵活的弹出,更换新的行程开关,把电路恢复原状,机床正常工作。1.1.2单纯硬件限位控制方式
把行程开关串联在机床急停回路里而不在PMC程序中编写相关逻辑控制,出现机床超程时通过急停回路发出急停信号而不出现超程报警信息。例如大连机机床厂生产的CK6140数控车床采用这种控制方式,天博2020浙商陇上行天水投资考察团在天水锻压机床集团考察参观如图3所示。
图3 硬件超程保护电气原理图
根据原理图,在出现硬件超程,系统处于急停状态时,将工作方式打手动连续进给状态(JOG),同时按下机床超程解除按钮开关和超程报警轴的反方向按钮开关,使机床反方向退出硬件超程范围,超程限位行程开关恢复常闭状态,然后按下系统复位键(RESET)使系统复位,就可以解除机床超程报警[3]。如果松开超程解除按键仍然超程报警则用万用表依次测量各个触点的通断,判断故障位置。
1.2 软限位(参数设定限位)
软限位是利用系统参数存储行程极限值的方法来进行超程保护的。这种控制方式不需要在机床上安装限位元件,既降低成本,安装调试也方便,但限位的可靠性较低。在FANUC系统数控机床中软限位是通过设置参数1320、1321的值来确定机床行程(1320为各轴正向存储行程极限值参数,1321为各轴负向存储行程极限值参数)。如宝鸡机床厂生产的Baoji VMC v3.1数控铣床只采用软限位工作,参数设置(见图4)。
图4 软限位超程保护参数设置
当机床运动坐标值超过系统参数设定的存储行程的极限值时,系统就会产生软限位超程报警(500为各轴正向软限位超程报警号,501为各轴负向软限位超程报警号)。这时可使刀具沿反方向移动,退出超程范围,然后按下系统复位键(RESET)使系统复位,就可以解除机床软限位超程报警。FANUC系统中只有在接通电源时执行手动参考点返回操作后软限位才能有效[4]。因此机床的限位故障只与参数设置和回零有关。当机床采用绝对编码器时,机床的参考点建立是在机床第一次通电调试时有机床厂家通过设置参考计数器容量来确定的,以后依靠伺服放大器上的外置DC6V电池保存的,如果电池电压不足保存数据或者受外界复杂的环境(电磁)机床零点会丢失,而造成软限位失效,此时需要安装新的电池并重新建立机床参考点即可。这种限位工作方式因为没有硬件开关故障率较低,但机床限位的可靠性较低,应注意机床的工作环境。
2.硬限位+软限位
采用软硬限位相结合的行程控制方式,这种控制方式是较为安全可靠,但数控机床成本会增加很多。因此一般厂家只采用前两种工作方式。软硬相结合的双重限位一般用在学校教学用的数控机床上。通过硬限位开关设置机床总的行程,设置软限位使机床工作在较小的范围内来防止学生学习过程中误操作而撞刀、尾座脱轨等。用软硬限位相结合的数控机床出现超程报警时,先按照软限位故障解决,如果不能排除再按照硬限位故障解决。
3.结束语
数控机床是技术密集型和知识密集型机电一体化产品,天博2023砖矿免费技术先进,结构复杂,这就要求作为维修技术人员要不断的学习,掌握分析故障、处理故障的维修技术,并及时总结故障的处理过程,通过努力使数控机床维修技术逐渐形成一套成熟的、完善的理论体系。 [科]
【参考文献】
[1]曹健.数控机床装调与维修[M].北京:清华大学出版社,2011.
[2]曹智军,肖龙.数控PMC编程与调试[M].北京:清华大学出版社,2010.
数控机床工作原理篇9
关键词:数控车床;创新设计;TRIZ理论
1经济型数控车床
数控车床的结构简单,操作方便,制造成本低并且技术容易掌握,通过用微机控制的步进电动机来执行本身的进给运动,其结构是由进给传动链最短出发,让步进电动机输出端配置减速器并与进给系统的丝杠连接,来实现X、Z轴的进给运动;采用可控电动尾座来实现对零件的顶尖顶紧工作;安装自动回转刀架,通过数控系统传递信号来实现刀具的旋转与进给加工;并采用开环控制系统,加工精度由执行元件和传动机构的精度来保证,虽然这种数控车床的定位精度较低,但是该数控车床的投资少,安装调试方便,适用于精度要求不高的零件加工,也是目前机械制造业应用最普遍的一种。
2冲突分析
经济型数控车床采用的是螺旋转位刀架,根据数控机床的加工特点,我们了解到,对于内孔的加工,只能借住车床尾座通过手动操作来打中心孔和钻孔从而实现内孔的加工,还有就是这种类型的刀架只能加工出内外圆柱、圆锥、螺纹、孔等,而达不到在零件侧面进行平面、腔的加工,在这里应用TRIZ理论来进行经济型CK6140数控车床的刀架的创新。工程冲突包括技术、物理和数学这三种冲突,它的主要内容也是TRIZ研究的内容。物理冲突就是为了实现某种功能而表现出一个子系统或元件有一种特性,并且出现与此特性相反的特性。情况分析如下:当一个子系统的有用功增强时也使其系统的有害功增强;当一个子系统的有害功降低也会使其有害功降低。
3利用TRIZ理论解决冲突
应用技术冲突解决的原理又称发明原理,随着科学技术的飞速发展,TRIZ团体通过对250万专利的精心研究,总结出了39条工程参数,所有的冲突问题都可以在工程参数表中查到,同时又提出了解决技术冲突的40条发明原理。经济型CK6140数控车床刀架改造技术冲突:数控车床实现零件轴上平面、腔的加工,若采用车铣复合装置的转塔刀架和机械手,提高了加工效率,但是制造成本较高,而且结构设计比较麻烦,不易于制造和维修。从39个工程参数中选择技术冲突的一对特征参数,由此确定标准工程参数如下:1)希望改进的特征:速度、生产率;2)恶化的特征:可制造性、可维修性;3)从冲突矩阵表中可查出发明原理。
4创新设计
主要设计是在刀架上加上一个动力铣头,动力铣头的主轴轴线与数控车床中心线相垂直,动力铣头由单独的步进电动机实现。若孔或腔的加工在同一母线上,可以把主轴电机上加个刹车即可实现。其螺旋转位四工位刀架需要改,选用中拖板丝杠的行程,而所选用的动力铣头要尽量靠近中拖板的后端,使得铣头和刀架之间的距离最大化。经过创新之后经济型CK6140数控车床在进行车削的加工同时,可以通过Y向步进电动机带动动力铣头进行铣削加工,实现轴上平面和槽的加工。具体的设计是把M33(车削)和M34(铣削)指令加入到PLC控制程序中,当数控车床开机时默认为车削加工状态,数控系统对内取消对Y轴电动机的监控和铣头电动机的控制指令输出,对外输出信号切断Y轴电动机的强电,这时只有X轴、Z轴参与联动工作。当需要对零件进行铣削加工时,只需在加工程序的编程中输入M34指令,就实现了系统对内恢复对Y轴电动机的监控和铣头电动机的控制指令输出,对外输出信号接通Y轴电动机的强电,这时数控车床就可以实现铣削功能,让主轴停止转动,即工件不动,铣刀旋转进给铣削。和经济型数控车床一样,电动刀架上可以安装4把车刀,铣头主轴上可安装一把铣刀,加工时通常是先进行车削加工,此时滑板上的电动刀架靠近工件进行车削加工,车削完成后,滑板后退,车削刀架远离工件,铣削主轴靠近工件,Y轴按加工需要动作,铣头电机旋转,进行铣削加工,如需更换铣刀,要停机手动换刀再继续加工,从而完成轴的平面、槽的加工。通过对数控车床总体结构进行创新设计,本文的主要研究内容和成果为:(1)提出刀架需要改进的地方,对其不足之处进行分析确定冲突类型属于技术冲突,介绍了TRIZ理论中的39个工程参数和40条发明原理,主要运用TRIZ理论中的矛盾冲突矩阵,根据在刀架的设计中遇到的问题,然后在冲突矩阵表格中选取提供的39个工程参数中的改善条件与恶化条件的关系,来初步确定可能应用到的40条发明原理中的其中一些原理,根据原理来设计预期的符合要求的刀架结构,在刀架上加上一个动力铣头,动力铣头的主轴轴线与数控车床中心线相垂直,动力铣头由单独的步进电动机实现。(2)对设计的刀架进行试验,验证它的工作原理,实现了在经济型数控车床上进行轴上平面和槽的加工,一般操作过程是先进行车削,此时切断Y轴电动机和动力铣头电动机,当进行铣削时,在程序中输入M34,恢复Y轴电动机和动力铣头电动机的工作,从而进行平面和槽的加工,工作原理是车床主轴不动即工件不动,让铣刀旋转进给进行铣削,到达加工的目的。
5小结
运用TRIZ理论对经济型数控车床的刀架进行结构和原理上的创新设计,理论上具有很强的可行性,此次对刀架具体结构设计并没有进行详细的计算和布局,机构设计不够理想,需要进一步完善该机构,才能更好地改善经济型数控车床的性能。
作者:孙玉生 单位:佛山市顺德区胡宝星职业技术学校
数控机床工作原理篇10
【关键词】数控机床;数控操作;误差原因;误差解析
中国机械制造业从21世纪初至今,基本上实现了数控机床的全面覆盖,其普及速度远远超过发达国家。但对于其他方面尚未成熟的中国制造业而言,数控机床的引入以及其高精度、快速度等特征能否得到充分体现,依然是一个研究关键。同时,人们对数控机床加工过程容易产生认知误差,认为数控机床的精度是可以完全保障的。事实上,数控机床所谓的“数字化精确度”是在理想环境下才能得到,但在现实机械制造业生产环境中,存在大量人为的、非机械类的干扰要素,数控机床自身难免受到影响,出现误差也是必然。
一、数控机床加工操作中的误差产生原因
鉴于机械加工产业生产环境及涉及要素的复杂性,导致数控机床加工操作中产生误差的原因很多,结合笔者实践经验来说,主要的原因有以下几种:
第一,数控机床编程导致的误差。很显然,数控机床可以有效地实现生产规模化效应,这源于它采用的数控技术,其中最关键的是编程软件及代码。由于数控软件编程代码中出现误差(插补误差),那么在生产过程中必然形成一系列的相同效应。例如借助直角、圆角、直线等在零件轮廓逼近的过程中形成的误差,虽然符合设计图的要求,但却严重的脱离了加工精确性。
第二,数控机床刀角圆弧的误差。由于加工材料的刚度、韧性较高大,车床刀具在进行切割的过程中不可能保持持续稳定,微弱的变化可能导致刀尖圆弧产生影响,当然,大幅度的尺寸、外观影响并不会出现,主要集中在锥面、圆弧等加工过程中,如出现多切、少切、变形等问题。
第三,操作过程出现的测量误差。测量是展开数控机床加工的前提,如果测量出现了误差,那么生产中的精度必然会受到影响。其原因包括两个方面,第一是测量人员自身缺乏严谨性,测量不科学、不准确,第二则是由测量工具导致的误差。
第四,刀具磨损导致的操作误差。前面已经阐述过,数控机床的加工材料硬度、刚度、韧性都很大,那么在长期的操作中必然Φ毒卟生严重的磨损。特别是一些金属材料的加工操作中,会产生极高的温度和氧化作用,进而导致磨损加剧,刀尖的磨损必然会影响预计精确度,最开始工作的时候,刀尖磨损的速度会比较快,后来就会越变越小;如下图所示,属于典型的刀具磨损导致的轮廓误差。
第五,反向失动量及对刀误差。机械加工生产中发现,数控机床会由于机械之间出现的缝隙以及机床传动部件的弹性形变而导致出现的误差,这种误差属于是反向失动量引起的,此外,对刀的过程中也容易出现误差,这主要是由于操作系统的进给修调比例值不对称造成的。
第六,机床系统误差。数控机床并非“铁板一块”,它也是由诸多部件构成的,那么在本体上也会出现公差现象,虽然在一定情况下其稳定性、整体性良好,但均匀度和传动路线都会对系统产生影响,进而导致误差的出现。
二、数控机床加工操作中减小误差的方法
科学实验表明,只有在理想环境下才能完全消除误差,现实生产中误差是必然存在的,只要将其控制在一个合理范围内,就不会对产品功能需求造成影响。因此,基于数控机床产生误差的原因,可以从以下三个方面展开减小误差的方法探讨。
首先,对数控机床的程序编写提高要求。程序编写直接影响着数控机床批量化生产的效果,在零件进行数控加工之前,必须要把具有一定可行度的加工程序编写出来,编写程序通常来说有两种方法:其一,采取手工编程的方式,这在大量嵌入式设备中具有体现,其二则是利用计算机辅助软件编程,笔者比较倾向于这一种,计算机辅助编程的方式可以规避很多人为失误,在精确控制方面也更科学,甚至可以实现生产模拟。
其次,对数控机床的刀具应用提高重视。刀具产生的误差也来源于两个方面,其一是刀具自身受到严重磨损的情况下,那么在加工的过程中必然会出现精确度误差。其二是对刀误差,要减小误差就要关注刀具的选择,一方面要满足高速度切削需要,另一方面则要具有相对的稳定性。
再次,对数控机床的整体误差进行把控。数控机床本身就存在大量的测量校对要求,相比普通机床而言,其管理要求更严格、涉及内容也更多,如果采用普通机床的管理方法来对待数控机床,很显然是不合理的。在管理方面要集中展开,按照生产需要合理布局,减少数控机床周边的影响因素。在误差检测方面,可以利用计算机进行整体管理,实现信息共享,满足参数对比的要求,从中发现数控机床自身存在的问题。
三、结束语
值得说明的是,“误差”并不是错误或失误,在科学研究范畴内讨论“误差”是合理的,任何一种严谨的研究或精密的设备中都可能存在误差,理论上也认为误差是不可避免的。但是,落实到机械加工层面,应该尽量的减小误差,将其控制在近乎可以省略的程度,并形成科学连贯的审核模式。在实际生产过程中,无论是大批量、大规模的加工,还是个性化、小批量的加工,都应该尽量控制误差、提高精确度。
作者简介:王钢(1979-),男,四川省自贡市人,自贡市职业培训学院,机械加工教研室教师,一级实习指导教师,从事数控加工专业教学工作。
参考文献:
[1]李恒亮,周洋.数控机床加工操作中的误差分析[J].河南科技,2012,17:78.
原创文章出自天博,欢迎转载!